Intrahepatic islet transplantation is a promising strategy for β-cell replacement therapy in the treatment of Type 1 Diabetes. However, several obstacles hinder the long-term efficacy of this therapy. A major challenge is the scarcity of donor organs. During the isolation process, islets are disconnected from their extracellular matrix (ECM) and vasculature, leading to significant loss due to anoikis and hypoxia. Additionally, inflammatory and rejection reactions further compromise islet survival and engraftment success. Extensive efforts are being made to improve the efficacy of islet transplantation. These strategies include promoting revascularization and ECM support through bioengineering techniques, exploring alternative sources of insulin-secreting cells, and providing immunomodulation for the graft. Despite these advancements, a significant gap remains in integrating these strategies into a cohesive approach that effectively replicates the native endocrine environment. Specifically, the lack of comprehensive methods to address both the structural and functional aspects of the endocrine niche limits reproducibility and clinical translation. Therefore, bioengineering an endocrine pancreas must aim to recreate the endocrine niche to achieve lifelong efficacy and insulin independence. This review discusses various strategies developed to produce the building blocks for generating a vascularized, immune-protected insulin-secreting construct, emphasizing the importance of the endocrine niche's composition and function.
Read full abstract