Serial sections of the conus medullaris and the filum terminale of 23 randomly selected human spinal cords were studied by light and electron microscopy, and following immunoperoxidase staining for glial fibrillary acidic protein (GFAP), vimentin, neuron-specific enolase (NSE), amyloid β protein, and S-100 protein. The intradural portion of the filum contains bundles of GFAP-positive glial fibers, scattered silver- and NSE-positive neurons, segments of peripheral nerve, blood vessels, fibrous connective tissue, and fat. Glial cell clusters varying from five to 100 cell layers thick at times constitute the bulk of the filum. The periependymal glial cells possess moderate amounts of eosinophilic cytoplasm and relatively uniform round to ovoid nuclei containing evenly distributed chromatin. They are distributed diffusely with no specific pattern of organization, although some of them showed a tendency to form acinar structures. A minority of the glial cells showed GFAP immunoreactivity, and some were immunoreactive for vimentin. Electron microscopy demonstrated the presence of periependymal cells showing cilia, microvilli, and the formation of intercellular junctional complexes, as well as cells containing bundles of glial filaments within the cytoplasm. Degenerated NSE-positive neurons and degenerated neurites resembling neuritic plaques were also demonstrated. However, immunoperoxidase staining for amyloid β protein was negative in these structures. Thus, the filum terminale is endowed with an abundance of glial cells and neurons and is not simply a fibrovascular tag. Periependymal glial cells in the filum terminale should not be mistaken for neoplasm. The presence of neuropil with profuse astroglial and neuronal components within the filum terminale suggests a possible functional role for these structures.
Read full abstract