Beta-arrestins-1 and 2 are known to play important roles in desensitization of membrane receptors and facilitation of signal transduction pathways. It has been previously shown that beta-arrestins are required for signal termination, internalization, and ERK1/2 activation downstream of protease-activated-receptor-2 (PAR-2), but it is unclear whether they are functionally redundant or mediate specific events. Here, we demonstrate that in mouse embryonic fibroblasts (MEFs) from beta-arrestin-1/2 knockout mice, G alpha q signaling by PAR-2, as measured by mobilization of intracellular Ca(2+), is prolonged. Only expression of beta-arrestin-1 shortened the signal duration, whereas either beta-arrestin-1 or 2 was able to restore PKC-induced receptor desensitization. Beta-arrestin-1 also mediated early, while beta-arrestin-2 mediated delayed, receptor internalization and membrane-associated ERK1/2 activation. While beta-arrestin-1 colocalized with a lysosomal marker (LAMP-1), beta-arrestin-2 did not, suggesting a specific role for beta-arrestin-1 in lysosomal receptor degradation. Together, these data suggest distinct temporal and functional roles for beta-arrestins in PAR-2 signaling, desensitization, and internalization.
Read full abstract