We explored the dynamic features of brain edema after traumatic brain injury (TBI) using healthy adult male Wistar rats. After inducing moderate brain injuries in the rats, we divided them randomly among seven groups on the basis of the time elapsed between TBI and examination: 1, 6, 12, 24, 48, 72, and 168 h. All rats were scanned using diffusion-weighted imaging (DWI) to observe tissue changes in the contusion penumbra (CP) after TBI. Immunoglobulin G expression was also detected. At 1 h after TBI, there was an annular light-colored region in the CP where the intercellular space was enlarged, suggesting vasogenic edema. At 6 h, the cells expanded, their nuclei shrank, and the cytoplasm was replaced by vacuoles, indicating intracellular edema. Vasogenic edema and intracellular edema increased 12 h after TBI, but decreased 24 h after TBI, with vasogenic edema increasing 48 h after TBI. By 72 h after TBI, intracellular edema dominated until resolution of all edema by 168 h after TBI. DWI indicated that the relative apparent diffusion coefficient increased markedly at 1 h after TBI, but was reduced at 6 and 12 h after TBI. At 48 h, relative apparent diffusion coefficient increased gradually and then declined at 72 h. In rats, TBI-related changes include dynamic variations in intracellular and vasogenic edema severity. Routine MRI and DWI examinations do not distinguish between the center of trauma and CP; however, the apparent diffusion coefficient diagram can portray variations in CP edema type and degree at different time-points following TBI.
Read full abstract