Abstract
The pineal gland (glandula pinealis) is neuroendocrine gland located at the epithalamus of the brain secreting melatonin. The aim of this study was to explore effects of prenatal hypoxia in rats at the age of 33 weeks on the occurrence of pineal gland calcification. Distribution and chemical composition of calcerous material by light, scanning and transmission electron microscopy was investigated. Melatonin concentrations in blood plasma by direct radioimmunoassay were measured. Rats were exposed to prenatal hypoxia for 12 h at day 20 of development and second group to prenatal hypoxia for 2x8 h at days 19 and 20 of development. Vacuoles of intracellular edema in the pineal samples after 12 h hypoxia were found. Their size ranges up to 30 µm. Some of them were filled with the flocculent and fibrous material. Samples of pineal glands after 2 x 8 h hypoxia revealed the pericellular edema of pinealocytes. The amount of calcium rich particles in 2 x 8 h hypoxia group was lower than in 12 h hypoxia group. Plasma melatonin levels did not differ between control and both hypoxia groups. We concluded that calcification is a process induced by osteoblasts and osteocytes with melatonin as a promotor and it is favored under hypoxic conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have