This study aimed to prepare, optimize and characterize novel felodipine-loaded polymeric nanomicelles, using a pluronic mixture of F127 and P123. Thin-film hydration method was adopted for the preparation of different polymeric nanomicelles (T1–T12) according to a 41.31 full factorial design. Factors studied were: Pluronic®:drug ratio (P:D ratio) (10, 20, 30 and 40 w/w) and percent of hydrophilic polymer (F127%) (33.33%, 50% and 66.67% w/w). Optimization criteria were to maximize transmittance percent (T%) and entrapment efficiency percent (EE%) and to minimize particle size (PS) and polydispersity index (PDI). The optimized formulation was further characterized by DSC, FTIR and 1H NMR studies. It was also subjected to stability testing and ex vivo permeation using rabbit intestines. Spherical nanomicelles of particle size ranging from 26.18 to 87.54 nm were successfully obtained. The optimized formulation was found to be the already prepared formulation T12 (P:D ratio of 40 and 66.67% F127) with suitable T% and EE% of 95.12% and 91.75%, respectively. DSC, FTIR and 1H NMR studies revealed felodipine (FLD) incorporation within T12 nanomicelles. T12 enhanced the ex vivo intestinal permeation of FLD when compared to a drug suspension and showed good stability. Therefore, pluronic nanomicelles could be promising for improved oral delivery of FLD.
Read full abstract