The traditional probe–pass integration system embeds communication information into a radar waveform, which leads to a high level of waveform autocorrelation sidelobes and a poor false symbol rate at low signal-to-noise ratios. This article proposes a three-dimensional indexed modulation-based design method for probe–pass integration waveforms. This method realises communication information modulation and demodulation by simultaneously indexing orthogonal waveform selection, transmitting pulse PRI changes and carrier frequency changes in three dimensions, and applying compressed perception technology to solve the problems of PRI shortcuts and carrier frequency, resulting in a velocity term in the received waveform that cannot be accumulated by phase reference to realise velocity super-resolution. Finally, the radar detection performance and communication performance are simulated and analysed, and the simulation results reveal that the method proposed in this paper can not only satisfy the radar detection performance requirements but also achieve a lower unsigned rate on the basis of an improved communication rate.
Read full abstract