Abstract

High-resolution wide-swath (HRWS) imaging is the research focus of the modern spaceborne synthetic-aperture radar (SAR) imaging field, with significant relevance and vast application potential. Staggered SAR, as an innovative imaging system, mitigates blind areas across the entire swath by periodically altering the radar pulse repetition interval (PRI), thereby extending the swath width to multiples of that achievable by conventional systems. However, the staggered mode introduces inherent challenges, such as nonuniform azimuth sampling and echo data loss, leading to azimuth ambiguities and substantially impacting image quality. This paper proposes a sparse SAR imaging method for the low-oversampled staggered mode via compound regularization. The proposed method not only effectively suppresses azimuth ambiguities arising from nonuniform sampling without necessitating the restoration of missing echo data, but also incorporates total variation (TV) regularization into the sparse reconstruction model. This enhances the accurate reconstruction of distributed targets within the scene. The efficacy of the proposed method is substantiated through simulations and real data experiments from spaceborne missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.