Tilted orthorhombic (TOR) models are typical for dipping anisotropic layers, such as fractured shales, and can also be due to nonhydrostatic stress fields. Velocity analysis for TOR media, however, is complicated by the large number of independent parameters. Using multicomponent wide-azimuth reflection data, we develop stacking-velocity tomography to estimate the interval parameters of TOR media composed of homogeneous layers separated by plane dipping interfaces. The normal-moveout (NMO) ellipses, zero-offset traveltimes, and reflection time slopes of P-waves and split S-waves ([Formula: see text] and [Formula: see text]) are used to invert for the interval TOR parameters including the orientation of the symmetry planes. We show that the inversion can be facilitated by assuming that the reflector coincides with one of the symmetry planes, which is a common geologic constraint often employed for tilted transversely isotropic media. This constraint makes the inversion for a single TOR layer feasible even when the initial model is purely isotropic. If the dip plane is also aligned with one of the symmetry planes, we show that the inverse problem for [Formula: see text]-, [Formula: see text]-, and [Formula: see text]-waves can be solved analytically. When only [Formula: see text]-wave data are available, parameter estimation requires combining NMO ellipses from a horizontal and dipping interface. Because of the increase in the number of independent measurements for layered TOR media, constraining the reflector orientation is required only for the subsurface layer. However, the inversion results generally deteriorate with depth because of error accumulation. Using tests on synthetic data, we demonstrate that additional information such as knowledge of the vertical velocities (which may be available from check shots or well logs) and the constraint on the reflector orientation can significantly improve the accuracy and stability of interval parameter estimation.
Read full abstract