Abstract
Because of the exponential distribution assumption, many reliability databases recorded data in an aggregate way. Instead of individual failure times, each aggregate data point is a summation of a series of collective failures representing the cumulative operating time of one component position from system commencement to the last component replacement. The data format is different from traditional lifetime data and the statistical inference is challenging. We first model the individual component lifetime by a gamma distribution. Confidence intervals for the gamma shape parameter can be constructed using a scaled χ2 approximation to a modified ratio of the geometric mean to the arithmetic mean, while confidence intervals for the gamma rate and mean parameters, as well as quantiles, are obtained using the generalized pivotal quantity method. We then fit the data using the inverse Gaussian (IG) distribution, a useful lifetime model for failures caused by degradation. Procedures for point estimation and interval estimation of parameters are developed. We also propose an interval estimation method for the quantiles of an IG distribution based on the generalized pivotal quantity method. An illustrative example demonstrates the proposed inference methods. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.