Abstract
Statistical modeling of vehicle crashes leads to a better understanding of how and why such crashes occur. Due to the irregular network structure of roadways, analyses are typically confined to a single roadway rather than considering the entire network collectively. Here, we present methodology to model crash risk of vehicle crashes on irregular roadway networks and estimate how that risk varies with road characteristics. We model vehicle crashes observed on a road network as a Poisson point pattern with a piecewise linear intensity surface. Further, we combine Bayesian additive regression trees (BART) and spatial data analysis to accurately explain the intensity surface allowing inference on the effect of road characteristics on crash risk. We illustrate the methodology using a dataset of vehicle crashes on Interstate highways in Utah.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.