Eragrostis of the tribe Eragrostideae is a taxonomically complex genus, because of its polyploid nature and the presence of similar morphological characters among its species. However, the relationship between these morphologically indistinguishable species at the genomic level has not yet been investigated. Here, we report the complete chloroplast genome of E. pilosa and compare its genome structures, gene contents, simple sequence repeats (SSRs), sequence divergence, codon usage bias, and Kimura 2-parameter (K2P) interspecific genetic distances with those of other Eragrostideae species. The E. pilosa chloroplast genome was 134,815 bp in length and contained 132 genes and four regions, including a large single-copy region (80,100 bp), a small single-copy region (12,661 bp), and a pair of inverted repeats (21,027 bp). The average nucleotide diversity between E. pilosa and E. tef was estimated to be 0.011, and 0.01689 among all species. The minimum and maximum K2P interspecific genetic distance values were identified in psaA (0.007) and matK (0.029), respectively. Of 45 SSRs, eight were shared with E. tef, all of which were in the LSC region. Phylogenetic analysis resolved the monophyly of the sampled Eragrostis species and confirmed the close relationship between E. pilosa and E. tef. This study provides useful chlorophyll genomic information for further species identification and phylogenetic reconstruction of Eragrostis species.
Read full abstract