Abstract

BackgroundWater mites are among the most diverse organisms inhabiting freshwater habitats and are considered as substantial part of the species communities in springs. As parasites, Hydrachnidia influence other invertebrates and play an important role in aquatic ecosystems. In Europe, 137 species are known to appear solely in or near springheads. New species are described frequently, especially with the help of molecular species identification and delimitation methods. The aim of this study was to verify the mainly morphology-based taxonomic knowledge of spring-inhabiting water mites of central Europe and to build a genetic species identification library.MethodsWe sampled 65 crenobiontic species across the central Alps and tested the suitability of mitochondrial (cox1) and nuclear (28S) markers for species delimitation and identification purposes. To investigate both markers, distance- and phylogeny-based approaches were applied. The presence of a barcoding gap was tested by using the automated barcoding gap discovery tool and intra- and interspecific genetic distances were investigated. Furthermore, we analyzed phylogenetic relationships between different taxonomic levels.ResultsA high degree of hidden diversity was observed. Seven taxa, morphologically identified as Bandakia concreta Thor, 1913, Hygrobates norvegicus (Thor, 1897), Ljania bipapillata Thor, 1898, Partnunia steinmanni Walter, 1906, Wandesia racovitzai Gledhill, 1970, Wandesia thori Schechtel, 1912 and Zschokkea oblonga Koenike, 1892, showed high intraspecific cox1 distances and each consisted of more than one phylogenetic clade. A clear intraspecific threshold between 5.6–6.0% K2P distance is suitable for species identification purposes. The monophyly of Hydrachnidia and the main superfamilies is evident with different species clearly separated into distinct clades. cox1 separates water mite species but is unsuitable for resolving higher taxonomic levels.ConclusionsWater mite species richness in springs is higher than has been suggested based on morphological species identification alone and further research is needed to evaluate the true diversity. The standard molecular species identification marker cox1 can be used to identify species but should be complemented by a nuclear marker, e.g. 28S, to resolve taxonomic relationships. Our results contribute to the taxonomical knowledge on spring inhabiting Hydrachnida, which is indispensable for the development and implementation of modern environment assessment methods, e.g. metabarcoding, in spring ecology.

Highlights

  • Water mites are among the most diverse organisms inhabiting freshwater habitats and are considered as substantial part of the species communities in springs

  • Similar to the study of Dabert et al [87], we observed that cox1 or large subunit ribosomal RNA gene (28S) alone are incapable of fully resolving phylogenetic relationships

  • Apart from the taxon assignment limitations when using cox1 alone, our findings show that the primer bias problem [36, 111] needs to be considered when water mites are targeted in metabarcoding studies as universal cox1 primers show unsatisfactory amplification performance

Read more

Summary

Introduction

Water mites are among the most diverse organisms inhabiting freshwater habitats and are considered as substantial part of the species communities in springs. Due to the high degree of adaptation and their influence on ecosystem functioning for other invertebrate taxa [10,11,12,13,14], these so called crenobiontic (occur exclusively in spring habitats) and crenophilous (tendency to be found in the spring brook) species play a critical role in spring species communities. Considering that springs are island-like habitats within an uninhabitable terrestrial matrix [15, 16], spring dwelling water mite populations are assumed to be rather isolated This would promote reproductive isolation and lead to an increased speciation rate [4, 17], which is among other things an explanation for the relatively high species diversity of water mites in springs. The diversity and abundance of water mite hosts is relatively high in springs compared to other freshwater habitats, which is likewise considered as precondition for the high number of crenobiont water mite species [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call