To increase the utilization of die-cast Mg alloys with various shapes in a variety of environments, the corrosion behaviors of commercial die-cast Mg alloys with different thicknesses were investigated in neutral and alkali solutions at ambient temperature. A decrease in the thickness of a specimen leads to an increase in cooling and solidification rates, which, in turn, decreases the size of the eutectic β phases and the interphase distance, thus improving the hardness of the specimen. Specimens with relatively large β phases were more corroded under neutral conditions due to severe galvanic corrosion at the interface between α-Mg and the β phases, whereas they were protected by passivation films formed on the substrate in the alkaline solution. However, in the case of the alloy with thin thickness and high solidification rate, the fine β phases improved corrosion resistance by forming a net structure that acted as a barrier to corrosion propagation of the α matrix. These results suggest that the size and distribution of the eutectic phases should be appropriately controlled, depending on the environment.
Read full abstract