Edge-assisted IoT technologies combined with conventional industrial processes help evolve diverse applications under the Industrial IoT (IIoT) and Industry 4.0 era by bringing cloud computing technologies near the hardware. The resulting innovations offer intelligent management of the industrial ecosystems, focusing on increasing productivity and reducing running costs by processing massive data locally. In this research, we design, develop, and implement an IIoT and edge-based system to monitor the energy consumption of a factory floor’s stationary and mobile assets using wireless and wired energy meters. Once the edge receives the meter’s data, it stores the information in the database server, followed by the data processing method to find nine additional analytical parameters. The edge also provides a master user interface (UI) for comparative analysis and individual UI for in-depth energy usage insights, followed by activity and inactivity alarms and daily reporting features via email. Moreover, the edge uses a data-filtering technique to send a single wireless meter’s data to the cloud for remote energy and alarm monitoring per project scope. Based on the evaluation, the edge server efficiently processes the data with an average CPU utilization of up to 5.58% while avoiding measurement errors due to random power failures throughout the day.