Determining cocoa bean quality is crucial for many players in the international supply chain. However, actual methods rely on a cut test protocol, which is limited by its subjective nature, or on time-consuming, expensive and destructive wet-chemistry laboratory procedures. In this context, the application of near infrared (NIR) spectroscopy, particularly with the recent developments of portable NIR spectrometers, may represent a valuable solution for providing a cocoa beans' quality profile, in a rapid, non-destructive, and reliable way. Monitored parameters in this work were dry matter (DM), ash, shell, fat, protein, total polyphenols, fermentation index (FI), titratable acidity (TA) and pH. Different chemometric analyses were performed on the spectral data and calibration models were developed using modified partial least squares regression. Prediction equations were validated using a fivefold cross-validation and a comparison between the different prediction performances for the portable and benchtop NIR spectrometers was provided. The NIRS benchtop instrument provided better performance of quantification considering the whole than the portable device, showing excellent prediction capability in protein and DM quantification. On the other hand, the NIRS portable device, although showing lower but valuable performance of prediction, can represent an appealing alternative to benchtop instruments for food business operators, being applicable in the field.