SUMMARY Within the last decade, thin ultra-low velocity zone (ULVZ) layering, sitting directly on top of the core–mantle boundary (CMB), has begun to be investigated using the flip-reverse-stack (FRS) method. In this method, pre- and post-cursor arrivals that are symmetrical in time about the ScS arrival, but with opposite polarities, are stacked. This same methodology has also been applied to high velocity layering, with indications that ultra-high velocity zones (UHVZs) may also exist. Thus far, studies using the FRS technique have relied on 1-D synthetic predictions to infer material properties of ULVZs. 1-D ULVZ models predominantly show a SdS precursor that reflects off the top of the ULVZ and an ScscS reverberation within the ULVZ that arrives as a post-cursor. 1-D UHVZ models are more complex and have a different number of arrivals depending on a variety of factors including UHVZ thickness, velocity contrast, and lateral extent. 1-D modelling approaches assume that lower mantle heterogeneity is constant and continuous everywhere across the lower mantle. However, lower mantle features display lateral heterogeneity and are either finite in extent or display local thickness variations. We examine the interaction of the ScS wavefield with ULVZs and UHVZs in 2.5-D geometries of finite extent. We show that multiple additional arrivals exist that are not present in 1-D predictions. In particular, multipath ScS arrivals as well as additional post-cursor arrivals are generated. Subsequent processing by the FRS method generates complicated FRS traces with multiple peaks. Furthermore, post-cursor arrivals can be generated even when the ScS ray path does not directly strike the heterogeneity from above. Analysing these predictions for 2.5-D models using 1-D modelling techniques demonstrates that a cautious approach must be adopted in utilization and interpretation of FRS traces to determine if the ScS wavefield is interacting with a ULVZ or UHVZ through a direct strike on the top of the feature. In particular, traveltime delays or advances of the ScS arrival should be documented and symmetrical opposite polarity arrivals should be demonstrated to exist around ScS. The latter can be quantified by calculation of a time domain multiplication trace. Because multiple post-cursor arrivals are generated by finite length heterogeneities, interpretation should be confined to single layer models rather than to interpret the additional peaks as internal layering. Furthermore, strong trade-offs exist between S-wave velocity perturbation and thickness making estimations of ULVZ or UHVZ elastic parameters highly uncertain. We test our analysis methods using data from an event occurring in the Fiji-Tonga region recorded in North America. The ScS bounce points for this event sample the CMB region to the southeast of Hawaii, in a region where ULVZs have been identified in several recent studies. We see additional evidence for a ULVZ in this region centred at 14°N and 153°W with a lateral scale of at least 250 km × 360 km. Assuming a constant S-wave velocity decrease of −10 or −20 per cent with respect to the PREM model implies a ULVZ thickness of up to 16 or 9 km, respectively.