This paper explores and presents the application of the Inductor–Diode and Inductor-Capacitor-Diode structures in a DC–DC step-down configuration for systems that require voltage adjustments. DC micro/picogrids are becoming more popular nowadays and the study of power electronics converters to supply the load demand in different voltage levels is required. Multiple strategies to step-down voltages are proposed based on different approaches, e.g., high-frequency transformer and voltage multiplier/divider cells. The key question that motivates the research is the investigation of the aforementioned Inductor–Diode and Inductor–Capacitor–Diode, current multiplier/divider cells, in a step-down application. The two-stage buck converter is used as a study case to achieve the output voltage required. To extend the intermediate voltage level flexibility in the two-stage buck converter, a second switch was implemented replacing a diode, which gives an extra degree-of-freedom for the topology. Based on this modification, three regions of operation are theoretically defined, depending on the operational duty cycles δ2 and δ1 of switches S2 and S1. The intermediate and output voltage levels are defined based on the choice of the region of operation and are mapped herein, summarizing the possible voltage levels achieved by each configuration. The paper presents the theoretical analysis, simulation, implementation and experimental validation of a converter with the following specifications; 48 V/12 V input-to-output voltage, different intermediate voltage levels, 100 W power rating, and switching frequency of 300 kHz. Comparisons between mathematical, simulation, and experimental results are made with the objective of validating the statements herein introduced.
Read full abstract