Polyamorphic transitions driven by high-energy mechanical milling (nanomilling) are studied in thioarsenide As4Sen-type glassy alloys obtained by melt quenching deviated from arsenic triselenide As2Se3 stoichiometry towards tetraarsenic pentaselenide (g-As4Se5) and tetraarsenic tetraselenide (g-As4Se4). This employs a multiexperimental approach based on powder X-ray diffraction (XRD) analysis complemented by thermophysical heat transfer, micro-Raman scattering (micro-RS) spectroscopy, and revised positron annihilation lifetime (PAL) analysis. Microstructure scenarios of these nanomilling-driven transformations in arsenoselenides are identified by quantum-chemical modeling using the authorized modeling code CINCA (the Cation Interlinked Network Cluster Approach). A straightforward interpretation of a medium-range structure response of a nanomilling-driven polyamorphism in the arsenoselenides is developed within the modified microcrystalline model. Within this model, the diffuse peak-halos arrangement in the XRD patterning is treated as a superposition of the Bragg-diffraction contribution from inter-planar correlations supplemented by the Ehrenfest-diffraction contribution from inter-atomic (inter-molecular) correlations related to derivatives of network As2Se3-type and molecular As4Se4 -type conformations. Changes in the medium-range structure of examined glassy arsenoselenides subjected to nanomilling occur as an interplay between disrupted intermediate-range ordering and enhanced extended-range ordering. The domination of network-forming conformations in arsenoselenides deviated from As2Se3 stoichiometry (such as g-As4Se5) results in rather slight changes in their calorimetric heat-transfer and micro-RS responses. At the atomic-deficient level probed by PAL spectroscopy, these changes are accompanied by reduced positron trapping rate of agglomerated multiatomic vacancies and vacancy-type clusters in an amorphous As-Se network. Under an increase in As content beyond the g-As4Se5 composition approaching g-As4Se4, nanomilling-driven polyamorphic transitions, which can be classified as reamorphization (amorphous I-to-amorphous II) phase transitions, are essentially enhanced due to the higher molecularity of these glassy alloys enriched in thioarsenide-type As4Se4 cage-like molecular entities and their low-order network-forming derivatives.
Read full abstract