Abstract

By XRPD analysis related to diffuse peak-halos in Se-rich glassy AsxSe100-x, the high-energy nanomilling driven reamorphization in these substances is recognized as molecular-to-network transformations of Se chains bridging cation polyhedrons (like AsSe3/2 pyramids) from preferential cis- to trans-configurated topology. At the medium-range structure, the process of reamorphization is revealed as enhancement in the intermediate-range ordering of these glasses due to high-angular shifted and broadened first sharp diffraction peak (FSDP) accompanied by suppression in extended-range ordering due to high-angular shifted but narrowed principal diffraction peak (PDP), so that peak-halos become more distinguishable after nanomilling. Principal trend in the XRPD patterns of glassy arsenoselenides with growing Se content is revealed as suppression in intermediate-range ordering accompanied by enhancement in extended-range ordering, resulting in more overlapped peak-halos. Irregular sequence of randomly distributed cis- and trans-configurated linkages in Se-rich g-AsxSe100-x is visualized by ab initio quantum-chemical modeling of molecular and chain-like network clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.