PurposeThis study aims to investigate magnetohydrodynamic (MHD) conjugate pure mixed convection considering interior heat production and resistive heating inside a square closed/open cavity featuring a rotating cylinder for aiding (clockwise) and opposing (counterclockwise) flow configurations. Moreover, the impacts of altering cylinder size and conductivity on the system’s overall performance to determine optimum conditions are examined in this investigation.Design/methodology/approachThe closed chamber is differentially heated by keeping high and low temperatures at the vertical boundaries. In contrast, the open cavity has a heated left wall and an open right boundary. The Galerkin finite element method is used to solve the Navier–Stokes and the thermal energy equations, which construct the present study’s mathematical framework. Numerical simulations are conducted for the specified ranges of several controlling parameters: Reynolds (31.62 ≤ Re ≤ 1000), Grashof (103 ≤ Gr ≤ 106) and Hartmann numbers (0 ≤ Ha ≤ 31.62), and volumetric heat generation coefficient (Δ = 0, 3).FindingsWhen Gr, Re and Ha simultaneously increase, the average Nusselt number along the warmed boundary rises accordingly. Conversely, interior heat production lowers heat transmission within the computational domain, which is also monitored regarding mean fluid temperature, overall entropy production and thermal performance criterion. Finally, the open cavity confirms better thermal performance than the closed cavity.Originality/valueComprehending the impacts of the magnetic field, Joule heating, internal heat generation and enclosed or open boundary on pure MHD combined free-forced convective flow offers valuable understandings of temperature fluctuations, velocity propagations, heat transport and irretrievable energy loss in numerous engineering applications.
Read full abstract