Impervious surface expansion (ISE) refers to the phenomenon that natural surfaces are covered by artificial materials, such as cement, asphalt, bricks, etc., usually due to human activities. Over recent decades, the rapid growth of the global population, economic development, and continuous urbanization have contributed to extensive ISE, which caused significant losses in terrestrial ecosystem carbon pools. A global assessment effort is lacking because of limited comprehensive data on carbon pools and uncertainties surrounding the extent of ISE. In this study, we aimed to quantify the carbon emissions resulting from global ISE between 1985 and 2020, following the method provided by the Intergovernmental Panel on Climate Change (IPCC) Guidelines. We first divided global land into 87 fine geographical zones by overlaying continental boundary information with an ecological zone map. Then, multiple time-series impervious surface data products, land cover dynamic monitoring product, global biomass data, and topsoil organic carbon (TSOC) information were integrated to build a lookup table (LUT) of biomass and TSOC density for these fine geographical zones. Last, we employed the IPCC method to estimate carbon emissions from ISE between 1985 and 2020. Our findings indicated a global ISE encompassing a total area of 58.12 Mha, with cropland encroachment accounting for 67.30 %. Over the past 35 years, cumulative committed carbon emissions from global ISE reached 1.14 ± 0.38 PgC, with TSOC representing 54.55 % and biomass carbon contributing 45.45 %.
Read full abstract