Anisotropic colloidal particles with asymmetric morphology possess functionally rich heterogeneous structures, thus offering potential for intricate superstructures or nanodevices. However, it is a challenge to achieve controlled asymmetric surface partitioned growth. In this work, an innovative strategy is developed based on the selective adsorption and growth of emulsion droplets onto different regions of object which is controlled by wettability. It is found that the emulsion droplets can selectively adsorb on the hydrophilic surface but not the hydrophobic one, and further form asymmetric tentacle by the interfacial sol-gel process along its trajectory. Janus particles with an anisotropic shape and multitentacle structure are achieved via integration of emulsion droplet (soft) and seed (hard) templates. The size and number of tentacles exhibit tunability mediated by soft and hard templates, respectively. This general strategy can be expanded to a variety of planar substrates or curved particles, further confirming the correlation between tentacle growth and Brownian motion. Most interestingly, it can be employed to selectively modify one region of surface partitioned particles to achieve an ABC three-component Janus structure.
Read full abstract