Abstract
Functional porous materials show extensive applications in the environment, biology, aerospace, and so on. In this work, the generation of silica foams and functionalization of pore surface were simultaneously realized through an interfacial sol-gel reaction within high internal phase emulsion (HIPE) microreactors, where a hyperbranched polyethoxysiloxane (PEOS) was used as the sole stabilizer for the HIPEs. With various functional substances containing amino, epoxy, and carboxyl groups initially dissolved in the aqueous phase of HIPEs, these functional groups could be grafted onto the pore surface in the process of forming silica foams. Amino-functionalized silica foam showed fast adsorption of sunset yellow, and the adsorption capacity could reach as high as 1213.13 mg/g. Sodium polyacrylate-modified silica foam exhibited good adsorption capacity of cationic dyes and metal ions, e.g., 280.11 mg/g to methylene and 226.24 mg/g to Cu(II). Epoxy-functionalized silica foam particles were confirmed with a pronounced activity at the oil/water interface due to their Janus-like surface, which could be used as Pickering stabilizer. This HIPE-based synthesis strategy for silica foams shows promising future in adsorption, emulsion stabilization, and compatibilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.