Sand-cemented bodies (SCBs) are naturally distributed in some interdune corridors in the central Taklimakan Desert, northwest China. In this study, field-collected SCB particles were used as the experimental material, and wind tunnel experiments were conducted with different sand supplies, wind velocities, and SCB coverages to evaluate SCB wind erosion efficiency and vertical mass flux. The results showed that wind erosion efficiency decreased as SCB coverage increased. When the SCB coverage was above 40%, sand deposition processes occurred only under saturated sand flow, while sand transport remained unaffected by increases in SCB coverage under unsaturated sand flow. Under saturated flow, the highest concentrations of transported sand were found at 0–6 cm above the surface, and the main sand bed process was deposition. The sand bed process changed from aeolian erosion to deposition with increasing SCB coverage and tended to remain stable until the SCB coverage exceeded 40%. By contrast, under unsaturated sand flow, the sand bed process was primarily aeolian erosion, and the highest concentrations of transported sand were found at 0–4 cm above the surface. At high SCB coverage levels (more than 40%), a general balance between aeolian erosion and deposition processes was reached. In summary, increasing SCB coverage had a significant impact on surface wind erosion processes. Thus, SCBs can be used as a novel sand retention material.