Abstract

The Namib Sand Sea is the largest active desert dunefield in southern Africa, and is comprised mainly of large north-south linear dunes. In the interdune areas of the northern Sand Sea eleven small areas of calcareous lacustrine sediment have been studied. These beds are typically less than a metre thick and are dominantly comprised of calcareous sandstones to mudstones and sandy limestones. The carbonates are mainly magnesian calcites (1–14% MgCO 3) with some protodolomite and aragonite. Calcified reed casts and fresh to brackish water gastropods, diatoms, and ostracods are present in some beds. δ 18O values indicate a hot and dry climate. A number of enriched δ 13C values may reflect high salinity, low organic populations, or carbonate recrystallization. These carbonate-rich lacustrine deposits are indicative of increased periods of moisture availability in this normally hyperarid region during the Late Quaternary. The origin of the water responsible for depositing these sediments may be: (1) ponding at the end point of the Tsondab River, which at one time extended farther west into the Sand Sea; (2) flooding into interdune corridors when water levels rose in rivers such as the Kuiseb; (3) groundwater seepage into depressions either through dunes that border rivers or from the underlying Tsondab Sandstone; and (4) increased rainfall. We do not believe that there is evidence to support a major increase in precipitation over the region. However, even a small increase in precipitation in the headwaters of valleys that drain toward the Sand Sea might: (1) generate enough additional runoff to extend the terminal point of rivers such as the Tsondab farther into the dunes; (2) cause lateral flooding from major valleys into interdune corridors; and (3) recharge aquifers. The sedimentary records at Narabeb, Ancient Tracks, and West Pan, which lie along the old course of the Tsondab River, favor a ponded river origin for them, whereas groundwater seepage is favored at other sites. The chronology of deposition, based on radiocarbon dates, suggests that ponding and recharge occurred earlier in the lower, western part of the area, and later in the east. This is in harmony with the view that the end point of the Tsondab River progressively retreated eastward between about 30 and 14 ka BP, as dunes blocked its route.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call