This numerical study investigates compression and flow field design effects on electrode behaviour in vanadium redox flow batteries (VRFBs). Through 3D simulations and analysis of various flow field designs, including conventional, serpentine, interdigitated, and parallel configurations, this study investigates three compression scenarios: uncompressed, non-homogeneously compressed, and homogeneously compressed electrodes. Hydrodynamic and electrochemical analyses reveal the impact on velocity, pressure, current density, overpotential, and charge–discharge performance. Interdigitated flow field is found to display the lowest charging potential and highest discharging potential among all flow fields under all three compression scenarios. Moreover, uncompressed electrode condition shows the conservative estimates of an average charging potential of 1.3647 V and average discharging potential of 1.3231 V in the case of interdigitated flow field, while compressed electrode condition and the non-homogeneously compressed electrode condition show an average charging potential of 1.3922 V and 1.3777 V, and an average discharging potential of 1.3019 V and 1.3224 V, respectively. Results highlight the significance of non-uniform compression while modelling and analysing the performance of VRFBs as it is a more realistic representation compared to the no-compression or homogeneous compression of the electrodes. The findings of this work provide insights for optimising VRFB performance by considering compression and flow field design.