Recent work in our laboratory has shown that the highly substituted, electronically rich 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (THIQ3CA) scaffold is a key building block for a novel class of promising anticoagulants.10 The synthesis of THIQ3CA analogs, especially containing specific, electronically rich substituents, has been a challenge and essentially no efficient methods have been reported in the literature. We describe three complementary, glycine donor-based strategies for high yielding synthesis of highly substituted, electronically rich THIQ3CA esters. Three glycine donors studied herein include hydantoin 1, (±)-Boc-α-phosphonoglycine trimethyl ester 2, and (±)-Z-α-phosphonoglycine trimethyl ester 3. Although the synthesis of THIQ3CA analogs could be achieved using either of the three, an optimal, high yielding approach for the desired THIQ3CA esters was best achieved using 3 in three mild, efficient steps. Using this approach, a focused library of advanced N-arylacyl, N-arylalkyl, and bis-THIQ3CA analogs was synthesized. Variable temperature and solvent-dependent NMR chemical shift studies indicated the presence of two major conformational rotamers in 3:1 proportion for N-arylacyl–THIQ3CA analogs, which were separated by a high kinetic barrier of ∼17 kcal/mol. In contrast, N-arylalkyl and bis-THIQ3CA variants displayed no rotamerism, which implicates restricted rotation around the amide bond as the origin for high-barrier conformational interconversion. This phenomenon is of major significance because structure-based drug design typically utilizes only one conformation. Overall, the work presents fundamental studies on the synthesis and conformational properties of highly substituted, electronically rich THIQ3CA analogs.
Read full abstract