Among complex oxides, perovskite-based manganites play a special role in science and technology. They demonstrate colossal magnetoresistance, and can be employed as memory and resistive switching elements or multiferroics. The perovskite structure ABO3 has two different cation sites: B-sites that are octahedrally coordinated by oxygen, and cuboctahedrally-coordinated (often heavily distorted) Asites. The magnetic and transport properties of perovskite manganites are largely determined by the Mn O Mn interactions in the perovskite framework of corner-sharing MnO6 octahedra. Although the A cations do not directly participate in these interactions, they control the Mn valence and the geometry of the Mn O Mn bonds. Complex phenomena, such as charge and orbital ordering, often accompany chemical substitutions on the A-site. Requirements on formal charge and ionic radius are usually different for cations adopting theA or B positions and prevent A/B mixing. Small and often highly charged transition-metal B-cations are unfavorable for the large 12coordinated A-site. Partial filling of the A-position with transition metals is, nevertheless, possible in a unique class of A-site ordered perovskites AA’3B4O12 (where A= alkali, alkali-earth, rare-earth, Pb, or Bi cations, A’=Cu or Mn, and B= transition metals, Ga, Ge, Sb, or Sn). A key ingredient of such compounds is the A’ cation that should be prone to a first-order Jahn–Teller effect (Cu or Mn). An oxygen environment suitable for such transition-metal cations at the A’ position is created by the aaa octahedral tilt system (in Glazer s notation) with a notably large magnitude of the tilt (for example, in CaCu3Ti4O12 the Ti O Ti bond angle is only 140.78). The tilt creates a square-planar anion coordination, favorable for Jahn–Teller-active A’ cations. The ap= ffiffiffi
Read full abstract