Passive multiuser communications in shallow water previously was demonstrated in the 3-4 kHz band using a time reversal approach. This paper extends those experimental results in three respects. First, a larger bandwidth at higher frequency (11-19 kHz) is employed allowing for the use of various symbol rates (or bandwidths). Second, two different shaping pulses are examined: a raised cosine filter and LFM (linear frequency modulation) chirp. Third, the adaptive time reversal approach with spatial nulling is applied to suppress the crosstalk among users. It is shown that the use of a larger bandwidth is beneficial along with the time reversal receiver which can handle significant intersymbol interference with minimal computational complexity. In addition, adding each user degrades the performance by about 4 dB for the benefit of linear increase in data rate. It is demonstrated that an aggregate data rate of 60 kbits/s can be achieved with a 7.5 kHz bandwidth (a spectral efficiency of 8 bits/s Hz) by three users distributed over 4.2-m depth at a 2.2 km range in shallow water using 16-QAM (quadrature amplitude modulation).
Read full abstract