Single-photon lidar (SPL) exhibits high sensitivity, making it particularly suitable for detecting weak echoes over long distances. However, its susceptibility to background noise necessitates the implementation of advanced filtering techniques and complex algorithms, which can significantly increase system cost and complexity. To address these challenges, we propose a time-division-multiplexing-based correlated photon lidar system that employs a narrowband pulsed laser with stable time delays and variable pulse intensities, thereby establishing temporal and intensity correlations. This all-fiber solution not only simplifies the system architecture but also enhances operational efficiency. An adaptive cross-correlation method incorporating time slicing has been developed to extract histogram signals, enabling successful 1.5 km distance measurements under intense daytime noise conditions, using a 1 s accumulation time and a 20 mm receiving aperture. The experimental results demonstrate a 38% (from 1.11 to 1.52) improvement in the signal-to-noise ratio (SNR), thereby enhancing the system’s anti-noise capability, facilitating rapid detection, and reducing overall system costs.
Read full abstract