In multi-agent confrontation scenarios, a jammer is constrained by the single limited performance and inefficiency of practical application. To cope with these issues, this paper aims to investigate the multi-agent jamming problem in a multi-user scenario, where the coordination between the jammers is considered. Firstly, a multi-agent Markov decision process (MDP) framework is used to model and analyze the multi-agent jamming problem. Secondly, a collaborative multi-agent jamming algorithm (CMJA) based on reinforcement learning is proposed. Finally, an actual intelligent jamming system is designed and built based on software-defined radio (SDR) platform for simulation and platform verification. The simulation and platform verification results show that the proposed CMJA algorithm outperforms the independent Q-learning method and provides a better jamming effect.
Read full abstract