Abstract Currently, in the production of cigarettes in the blade, charging export moisture control means is relatively single and can not effectively guarantee the excellent quality of cigarette filament. In this paper, first of all, the working principle of the tobacco blade charging machine is introduced, and the moisture of the tobacco leaf for the charging machine is dynamically analyzed, and the influence of the return air temperature control of the charging machine on the export moisture of the blade charging process is explored. Secondly, based on the traditional PID controller, an adaptive fuzzy PID controller is established by combining adaptive fuzzy rules, and then the stacked noise-reducing self-encoder in deep learning is combined with the adaptive fuzzy PID control to design the intelligent control structure of export moisture of leaf charging process. Finally, the effectiveness of export moisture intelligence control, process capability index, and the effect before and after application were analyzed in controlled experiments, respectively. The results show that the difference between the predicted value and the real value of blade export moisture in this paper’s method is only 0.5%, and the process capability index of this paper’s method is improved by 1.48 compared with the PID controller, and it can control the temperature of the return air of the charging machine in the range of 56.86℃~57.21℃. The intelligent control method of export moisture introduced by deep learning can accurately control the export moisture of the leaf dosing process, which effectively ensures the quality of tobacco filament making.