Abstract

An adaptive neural network–based steering control algorithm is proposed for yaw rate tracking of autonomous ground vehicles with in-vehicle signal time delay. The control system consists of two neural networks: the observer neural network and the controller neural network. The observer neural network adapts itself to the system dynamics during the training phase. Once trained, the observer neural network cooperates with the controller neural network, which constantly adapts itself during the control task. In this way, an adaptive and intelligent control structure is proposed. Through simulation studies, it has been shown that while a proportional-integral-derivative type steering controller fails to perform its control task in case of steering signal delay, the proposed control algorithm manages to adapt itself according to the control problem and achieves reference yaw rate tracking. The robustness of the control algorithm according to the signal delay magnitude has been demonstrated by simulation studies. A rigorous Lyapunov stability analysis of the control algorithm is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.