In this paper, we report on the measurement of the optical properties (absorption and scattering coefficients) of photoluminescent turbid media using a homemade integrating sphere setup equipped with a tunable monochromatic light source. The hemispherical reflectance and transmission data are analyzed with the radiative transfer equation using a Monte Carlo simulation-based lookup table to obtain the optical properties of the sample. The results are compared with the optical properties received from a classical integrating sphere setup equipped with a broadband white light source. The additional light of the photoluminescence generates artifacts within the optical properties, which are not present using a monochromatic light source. Additionally, a batch of samples with a broad range of scattering coefficients and dye concentrations were prepared and characterized with the aforementioned setup. The findings can help to generate a digital twin with the optical properties of the sample, which improves the physically based rendering and the design of, e.g., white-light LEDs. Dental restoration and photodynamic therapy also benefit from determination of the optical properties of photoluminescent turbid media.
Read full abstract