The association kinetics of 125I beta nerve growth factor (NGF) binding to the PC12 clonal cell line have been examined in detail at 0.5 and 37 degrees C. These data were examined by utilizing a reversible second-order integrated rate equation, and the results were not consistent with a simple bimolecular process. Two association rates were required to explain the results adequately. At 37 degrees C, the faster component was estimated to have a second-order association rate constant of 1.4 X 10(7) M-1 s-1, while the rate constant for the slower component (3.8 X 10(6) M-1 s-1) was about 4-fold lower. As shown by others, the temperature dependence of the dissociation kinetics indicated that while the rapidly dissociating component was only slightly slowed by lowering the chase temperature to 0.5 degrees C, the second component was slowed by about 270-fold, from 8 X 10(-4) s-1 to 3 X 10(-6) s-1. The binding data that describe the slowly dissociating component were obtained by utilizing this differential temperature dependence and revealed a concave downward Scatchard plot. The binding parameters determined from computer analysis using a nonlinear fitting program (LIGAND) suggest that this component consists of (a) an interacting class of about 4000 sites/cell that have a first stoichiometric steady-state dissociation constant of 65 pM and a second stoichiometric interaction constant of 16 pM, indicative of positively cooperative interactions, and (b) a class of sites consistent with a ratio of sites/Kd of about 11.1 sites/(cell X pM). The steady-state binding results at 37 degrees C indicated only one class of binding sites (155,000 +/- 18,000 sites/cell) that had an apparent Kd of 0.52 +/- 0.03 nM. One class of sites was also observed at 0.5 degrees C, and the receptor concentration was found to be reduced (99,000 +/- 7600 sites/cell) while the Kd was increased (1.7 +/- 0.14 nM). A significant level of positively cooperative interactions was observed frequently at 37 degrees C that was not due to a failure to reach steady-state conditions, internalization, or degradation. Since cooperativity of binding was never observed at 0.5 degrees C, a membrane event may be involved. Determination of the contribution of the different classes of NGF receptors found on PC12 cells to the biological actions of NGF requires a clear understanding of their kinetic properties and their relationship to each other. The studies presented here indicate that their interactions are more complex than previously described.