Abstract

Methods are given for analysing the time course of an enzyme-catalysed reaction when the concentration of the enzyme itself is high, a situation which is often found in vivo. (1) The integrated form of the kinetic equation for a concentrated Michaelian enzyme in absence of product inhibition is given. Parameters are shown to be calculated easily using non-linear fitting procedures. (2) A general algorithm to analyse progress-curve data in more complex cases (i.e. when the analytical form of the integrated rate equation is not known or is exceedingly complex) is proposed. This algorithm may be used for any enzyme mechanism for which the differential form of the kinetic equation may be written analytically. We show that the method allows differentiation between the main types of product inhibition which may occur in the case of a highly concentrated Michaelian enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.