Recently, there has been a huge advancement in renewable energy integration in power systems. Power converters with grid-forming or grid-following topologies are typically employed to link these decentralized power sources to the grid. However, because distributed generation has less inertia than synchronous generators, their use of renewable energy sources threatens the electrical grid’s reliability. Suitable control approaches for ensuring frequency and voltage stability in the grid-connected form of operation are established in this study, which offers dynamic, seamless power switching in the islanded mode of operation. In this research, effective Phase Locked Loop (PLL) techniques for grid-forming (GFM) and grid-following (GFL) converters are designed to achieve a smooth transition from grid-tied to islanded mode of operation. In this work, PLL configurations are implemented while considering the active and reactive power, frequency, voltage, and current parameters of the system, and ensuring voltage and frequency stability. The simulation results in a microgrid network that ensures a smooth transition of power transfer while switching between modes of operation, and supports the voltage and frequency stability of the system.
Read full abstract