Abstract

Extensive research has been diligently conducted on wind energy technologies in response to pressing global environmental challenges and the growing demand for energy. Accurate wind speed predictions are crucial for the effective integration of large wind power systems. This study presents a novel and hybrid framework called ICEEMDAN-Informer-GWO, which combines three components to enhance the accuracy of wind speed predictions. The improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) component improves the decomposition of wind speed data, the Informer model provides computationally efficient wind speed predictions, and the grey wolf optimisation (GWO) algorithm optimises the parameters of the Informer model to achieve superior performance. Three different sets of wind speed prediction (WSP) models and wind farm data from Block Island, Gulf Coast, and Garden City are used to thoroughly assess the proposed hybrid framework. This evaluation focusses on WSP for three specific time horizons: 5minutes, 30minutes, and 1hour ahead. The results obtained from the three conducted experiments conclusively demonstrate that the proposed hybrid framework exhibits superior performance, leading to statistically significant improvements across all three time horizons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call