Transition metal dichalcogenides (TMDs) have emerged as two-dimensional (2D) building blocks to construct nanoscale light sources. To date, a wide array of TMD-based light-emitting devices (LEDs) have been successfully demonstrated. Yet, their atomically thin and planar nature entails an additional waveguide/microcavity for effective optical routing/confinement. In this sense, integration of TMDs with electronically active photonic nanostructures to form a functional heterojunction is of crucial importance for 2D optoelectronic chips with reduced footprint and higher integration capacity. Here, we report a room-temperature waveguide-integrated light-emitting device based on a p-type monolayer (ML) tungsten diselenide (WSe2) and n-type cadmium sulfide (CdS) nanoribbon (NR) heterojunction diode. The hybrid LED exhibited clear rectification under forward biasing, giving pronounced electroluminescence (EL) at 1.65 eV from exciton resonances in ML WSe2. The integrated EL intensity against the driving current shows a superlinear profile at a high current level, implying a facilitated carrier injection via intervalley scattering. By leveraging CdS NR waveguides, the WSe2 EL can be efficiently coupled and further routed for potential optical interconnect functionalities. Our results manifest the waveguided LEDs as a dual-role module for TMD-based optoelectronic circuitries.
Read full abstract