This paper is mainly concerned with introducing a numerical method for solving initial–boundary value problems with integer and fractional order time derivatives. The method is based on discretizing the considered problems with respect to spatial and temporal domains. With the help of finite difference methods, we transformed the studied problem into a set of fractional differential equations. Then, we implemented the fractional Adams method to solve this set in order to provide approximate solutions to the main problem. This combination results in an algorithm that can efficiently and accurately solve a general class of integer and fractional order initial–boundary value problems, such that it does not need to solve large systems of linear equations. In addition, we discussed the stability of the proposed scheme. Three illustrative examples are numerically solved to reveal the effectiveness and validity of the proposed technique.