Abstract

This paper presents a study on a memristive two-neuron-based Hopfield neural network with fractional-order derivatives. The equilibrium points of the system are identified, and their stability is analyzed. Bifurcation diagrams are obtained by varying the magnetic induction strength and the fractional-order derivative, revealing significant changes in the system dynamics. It is observed that lower fractional orders result in an extended bistability region. Also, chaos is only observed for larger magnetic strengths and fractional orders. Additionally, the application of the fractional-order model for image encryption is explored. The results demonstrate that the encryption based on the fractional model is efficient with high key sensitivity. It leads to an encrypted image with high entropy, neglectable correlation coefficient, and uniform distribution. Furthermore, the encryption system shows resistance to differential attacks, cropping attacks, and noise pollution. The Peak Signal-to-Noise Ratio (PSNR) calculations indicate that using a fractional derivative yields a higher PSNR compared to an integer derivative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.