BackgroundNumerous reports have shown that rigid spinal fixation contributes to a series of unwanted complications in lumbar fusion procedure. This innovative micro-dynamic pedicle screw study was designed to investigate the biomechanical performance of lumbar implants using numerical simulation technique and biomechanical experiment.MethodsInstrumented finite element models of three configurations (dynamic fixation, rigid fixation and hybrid fixation) using a functional L3-L4 lumbar unit were developed, to compare the range of motion of the lumbar spine and stress values on the endplate and implants. An in vitro experiment was simultaneously conducted using 18 intact porcine lumbar spines and segmental motion analyses were performed as well.ResultsSimulation results indicated that the dynamic fixation and the hybrid fixation models respectively increased the range of motion of the lumbar spine by 95 and 60% in flexion and by 83 and 55% in extension, compared with the rigid fixation model. The use of micro-dynamic pedicle screw led to higher stress on endplates and lower stress on pedicle screws. The outcome of the in vitro experiment demonstrated that the micro-dynamic pedicle screw could provide better range of motion at the instrumented segments than a rigid fixation.ConclusionThe micro-dynamic pedicle screw has the advantage of providing better range of motion than conventional pedicle screw in flexion-extension, without compromising stabilization, and has the potential of bringing the load transfer behavior of fusional segment closer to normal and also lowers the stress values of pedicle screws.
Read full abstract