In recent years, the increasing demand for extensive strontium (Sr) datasets across various scientific fields has prompted the development of fast, precise, and reliable protocols. These protocols aim to achieve high sample-throughput without compromising data quality. A novel method termed the zirconium (Zr) doped sample-standard bracketing (SSB) has been recently introduced for isotope measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). This method allows for simultaneous acquisition of 87Sr/86Sr and δ88Sr data without the need for sample spiking. However, the reliability of this method in handling large datasets and ensuring long-term reproducibility requires additional documentation. A comprehensive examination of the reliability of Sr isotope data over two years involves the implementation of systematic tests on reference materials from the National Institute of standards and technology (NIST) with the standard reference material (SRM) numbers: 1400, 1515, 987, 2910b, 1486, as well as a Hawaiian volcano observatory basalt (BHVO-1). The results of this study lead to the definition of a set of quality control parameters. The developed protocol applies various controls to ensure precise matching of Sr and Zr concentrations for both the samples and the bracketing standard (NIST SRM 987), along with the identification of instrumental biases. The outlined quality control ensures the reproducibility of the results (87Sr/86Sr = 0.710247 ± 0.000026, 2SD, n = 557; and δ88Sr = 0.001 ± 0.053 ‰, 2SD, n = 537 for NIST SRM 987), proving invaluable for archaeological, geological, and ecological studies requiring the fast acquisition of extensive datasets (n > 100) to create isotopic baselines.
Read full abstract