A multi-module staggered (MMS) long-linear-array (LLA) detector is presently recognized as an effective and widely adopted means of improving the field of view (FOV) of in-orbit optical line-array cameras. In particular, in terms of low-orbit whisk-broom payloads, the MMS LLA detector combined with the one-dimensional scanning mirror is capable of achieving both large-swath and high-resolution imaging. However, because of the complexity of the instantaneous relative motion model (IRMM) of the whisk-broom imaging mechanism, it is really difficult to determine and verify the actual numbers of overlapping pixels of adjacent detector sub-module images and consecutive images in the same and opposite scanning directions, which are exceedingly crucial to the instrument design pre-launch as well as the in-orbit geometric quantitative processing and application post-launch. Therefore, in this paper, aiming at addressing the problems above, we propose a global-scale overlapping pixels calculation method based on the IRMM and rigorous geometric positioning model (RGPM) of the whisk-broom payloads with an MMS LLA detector. First, in accordance with the imaging theory and the specific optical–mechanical structure, the RGPM of the whisk-broom payload is constructed and introduced elaborately. Then, we qualitatively analyze the variation tendency of the overlapping pixels of adjacent detector sub-module images with the IRMM of the imaging targets, and establish the associated overlapping pixels calculation model based on the RGPM. And subsequently, the global-scale overlapping pixels calculation models for consecutive images of the same and opposite scanning directions of the whisk-broom payload are also built. Finally, the corresponding verification method is presented in detail. The proposed method is validated using both simulation data and in-orbit payload data from the Thermal Infrared Spectrometer (TIS) of the Sustainable Development Goals Satellite-1 (SDGSAT-1), launched on 5 November 2021, demonstrating its effectiveness and accuracy with overlapping pixel errors of less than 0.3 pixels between sub-modules and less than 0.5 pixels between consecutive scanning images. Generally, this method is suitable and versatile for the other scanning cameras with a MMS LLA detector because of the similarity of the imaging mechanism.
Read full abstract