Albendazole serves as a broad-spectrum anthelmintic medication for treating hydatid cysts and neurocysticercosis. However, its therapeutic effectiveness is limited by poor solubility. Nanocrystals offer a promising technology to address this limitation by enhancing drug solubility. The objective of this study is to evaluate an effective stabilizer for creating an albendazole nanocrystal formulation to improve oral absorption. Among different surfactants and polymers examined, tea saponins were used as the stabilizer to develop a nanosuspension with the particle size of 180nm through a wet grinding approach. The physical characteristics of the nanocrystals were assessed using SEM, DSC, and XRPD. The nanocrystals significantly enhanced solubility by 2.9-2602 fold in different media and showed significant enhancement in dissolution rate compared to albendazole crystals in both pH 1.0 and pH 6.8 medium. Everted gut sacs experiments demonstrated that the nanocrystals increased Papp by 3.60-fold in duodenum, 3.76-fold in jejunum, 3.71-fold in ileum, and 5.26-fold in colon, respectively. Furthermore, pharmacokinetic studies revealed that the nanocrystals significantly enhanced oral bioavailability, resulting in a 4.65-fold increase in plasma AUC0-t value of albendazole sulfoxide (the primary active metabolite of albendazole) compared to the albendazole group. The present data indicates that tea saponins are potential natural stabilizers for preparing nanocrystals with enhanced oral bioavailability for insoluble drugs.
Read full abstract