Many membrane oxygenator patients suffer from renal disfunction. For these patients, a novel device integrating artificial lung and kidney support is being developed. Although outside-in blood flow is standard for membrane oxygenators, this is not typical for hemodialysis systems. The effect of outside-in blood flow on the efficiency of hemodialysis fibers for continuous hemodialysis and hemofiltration is yet unclear.This study evaluates the efficiency of commercial hemodialyzer membranes utilized outside-in compared to traditional inside-out mode regarding clearance of urea and creatinine, and ultrafiltration coefficient during in-vitro tests with porcine blood. Our results showed that dialyzers (1.2 m2, asymmetric hollow fibers) utilized outside-in had similar clearances of urea and creatinine compared to dialyzers used in the traditional mode (p > 0.7). However, outside-in dialyzers had an ultrafiltration coefficient four times lower than dialyzers applied in a conventional way, but adequate fluid removal could be achieved by controlling pressures in the system. This in-vitro study indicates that outside-in fibers could be sufficiently effective to maintain typical continuous renal replacement therapy doses. We regard this as one step towards a novel device with a mixed membrane fiber bundle utilizing blood flow outside both hemodialysis fibers and gas exchange fibers to provide simultaneous lung and kidney support.
Read full abstract