Abstract
This work presents a disruptive approach to promote highly-efficient photo-Fenton process at neutral pH under continuous mode operation. The system consists of a tube-in-tube membrane reactor designed for continuous-flow titration of low iron doses to the annular reaction zone (ARZ). A concentrated acidic ferrous ion (Fe2+) solution is fed by the lumen-side of the membrane, permeating through the membrane pores (inside-out mode), being dosed and uniformly delivered to the membrane shell-side. Polluted water, containing amoxicillin (AMX) and oxidant (H2O2), flows continuously in the reactor annulus (space between the membrane shell-side and an outer quartz tube). The catalyst radial dispersion is enhanced by the helicoidal movement of water around the membrane shell-side, efficiently promoting its contact with H2O2 and UV light. The efficiency of photochemical and photocatalytic oxidation was evaluated as a function of catalyst dose, catalyst injection mode (radial permeation vs injection upstream from the reactor inlet), light source (UVA vs UVC) and aqueous solution matrix (synthetic vs real wastewater). At steady-state, photo-Fenton reaction with Fe2+ radial addition, driven by UVC light, showed the highest AMX removal for synthetic (∼65%, removal rate of 44 μMAMX/min, using [Fe2+]ARZ = 2 mg/L and [H2O2]inlet = 10 mg/L) and real municipal wastewaters (∼45%, removal rate of 31 μMAMX/min, with [Fe2+]ARZ = 5 mg/L and [H2O2]inlet = 40 mg/L), with a residence time of only 4.6 s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.