BackgroundHydrological impacts on aquatic biota have been assessed in numerous empirical studies. Aquatic insects are severely affected by population declines and consequent diversity loss. However, many uncertainties remain regarding the effects of hydrology on insect production and the consequences of energy transfer to the terrestrial ecosystem. Likewise, sublethal effects on insect morphology remain poorly quantified in highly variable environments. Here, we characterized monthly fluctuation in benthic and emerged biomass of Ephemeroptera in a tropical lowland stream. We quantified the proportion of mayfly production that emerges into the riparian forest. We also examined the potential morphological changes in Farrodes caribbianus (the most abundant mayfly in our samples) due to environmental stress.MethodsWe collected mayflies (nymphs and adults) in a first-order stream in Costa Rica. We compared benthic and adult biomass from two years’ worth of samples, collected with a core sampler (0.006 m2) and a 2 m2-emergence trap. The relationship between emergence and annual secondary production (E/P) was used to estimate the Ephemeroptera production that emerged as adults. A model selection approach was used to determine the relationship between environmental variables that were collected monthly and the emergent biomass. To determine potential departures from perfect bilateral symmetry, we evaluated the symmetry of two morphological traits (forceps and forewing) of F. caribbianus adults. We used Spearman’s rank correlation coefficients (ρ) to examine potential changes in adult body length as a possible response to environmental stress.ResultsBenthic biomass was variable, with peaks throughout the study period. However, peaks in benthic biomass did not lead to increases in mayfly emergence, which remained stable over time. Relatively constant mayfly emergence suggests that they were aseasonal in tropical lowland streams. Our E/P estimate indicated that approximately 39% and 20% (for 2002 and 2003, respectively) of the nymph production emerged as adults. Our estimated proportion of mayfly production transferred to terrestrial ecosystems was high relative to reports from temperate regions. We observed a strong negative response of F. caribbianus body length to increased hydrology (Spearman: ρ = −0.51, p < 0.001), while slight departures from perfect symmetry were observed in all traits.ConclusionOur two years study demonstrates that there was large temporal variability in mayfly biomass that was unrelated to hydrological fluctuations, but potentially related to trophic interactions (e.g., fish predation). Body length was a good indicator of environmental stress, which could have severe associated costs for mayfly fitness in ecosystems with high temporal variation. Our results highlight the complex ecological and evolutionary dynamics of tropical aquatic insects, and the intricate connection between aquatic and terrestrial ecosystems.
Read full abstract