We report dual-gate modulation of topological insulator field-effect transistors (TI FETs) made on Bi2Te3 thin flakes with integration of atomic-layer-deposited (ALD) Al2O3 high-k dielectric. Atomic force microscopy study shows that ALD Al2O3 is uniformly grown on this layer-structured channel material. Electrical characterization reveals that the right selection of ALD precursors and the related surface chemistry play a critical role in device performance of Bi2Te3 based TI FETs. We realize both top-gate and bottom-gate control on these devices, and the highest modulation rate of 76.1% is achieved by using simultaneous dual gate control.
Read full abstract